All checks were successful
Modulation Recognition Demo / ria-demo (push) Successful in 2m52s
Documentation and formatting updates: - Updates to project README. - Adding project health files (`LICENSE` and `SECURITY.md`) - A few minor formatting changes throughout - A few typo fixes, removal of unused code, cleanup of shadowed variables, and fixed import ordering with isort. **Note:** These changes have not been tested. Co-authored-by: Michael Luciuk <michael.luciuk@gmail.com> Co-authored-by: Liyu Xiao <liyu@qoherent.ai> Reviewed-on: https://git.riahub.ai/qoherent/modrec-workflow/pulls/1 Reviewed-by: Liyux <liyux@noreply.localhost> Co-authored-by: Michael Luciuk <michael@qoherent.ai> Co-committed-by: Michael Luciuk <michael@qoherent.ai>
169 lines
5.1 KiB
Python
169 lines
5.1 KiB
Python
import os
|
||
from typing import List
|
||
|
||
import h5py
|
||
import numpy as np
|
||
from split_dataset import split, split_recording
|
||
from utils.io import from_npy
|
||
|
||
from helpers.app_settings import DataSetConfig, get_app_settings
|
||
|
||
meta_dtype = np.dtype(
|
||
[
|
||
("rec_id", "S256"),
|
||
("snippet_idx", np.int32),
|
||
("modulation", "S32"),
|
||
("snr", np.int32),
|
||
("beta", np.float32),
|
||
("sps", np.int32),
|
||
]
|
||
)
|
||
|
||
info_dtype = np.dtype(
|
||
[
|
||
("num_records", np.int32),
|
||
("dataset_name", "S64"), # up to 64‐byte UTF-8 strings
|
||
("creator", "S64"),
|
||
]
|
||
)
|
||
|
||
|
||
def write_hdf5_file(records: List, output_path: str, dataset_name: str = "data") -> str:
|
||
"""
|
||
Writes a list of records to an HDF5 file.
|
||
Parameters:
|
||
records (list): List of records to be written to the file
|
||
output_path (str): Path to the output HDF5 file
|
||
dataset_name (str): Name of the dataset in the HDF5 file (default: "data")
|
||
Returns:
|
||
str: Path to the created HDF5 file
|
||
"""
|
||
meta_arr = np.empty(len(records), dtype=meta_dtype)
|
||
for i, (_, md) in enumerate(records):
|
||
meta_arr[i] = (
|
||
md["rec_id"].encode("utf-8"),
|
||
md["snippet_idx"],
|
||
md["modulation"].encode("utf-8"),
|
||
int(md["snr"]),
|
||
float(md["beta"]),
|
||
int(md["sps"]),
|
||
)
|
||
|
||
first_rec, _ = records[0] # records[0] is a tuple of (data, md)
|
||
|
||
with h5py.File(output_path, "w") as hf:
|
||
data_arr = np.stack([rec[0] for rec in records])
|
||
dset = hf.create_dataset(dataset_name, data=data_arr, compression="gzip")
|
||
|
||
mg = hf.create_group("metadata")
|
||
mg.create_dataset("metadata", data=meta_arr, compression="gzip")
|
||
|
||
print(dset.shape, f"snippets created in {dataset_name}")
|
||
|
||
info_arr = np.array(
|
||
[
|
||
(
|
||
len(records),
|
||
dataset_name.encode("utf-8"),
|
||
b"generate_dataset.py", # already bytes
|
||
)
|
||
],
|
||
dtype=info_dtype,
|
||
)
|
||
|
||
mg.create_dataset("dataset_info", data=info_arr)
|
||
|
||
return output_path
|
||
|
||
|
||
def complex_to_channel(data: np.ndarray) -> np.ndarray:
|
||
"""
|
||
Converts complex-valued IQ data of shape (1, N) to a 2-channel real array of shape (2, N).
|
||
|
||
Parameters:
|
||
data (np.ndarray): Complex-valued array of shape (1, N)
|
||
|
||
Returns:
|
||
np.ndarray: Real-valued array of shape (2, N) with separate real and imaginary channels
|
||
"""
|
||
assert np.iscomplexobj(data) # check if the data is in the form a+bi
|
||
real = np.real(data[0]) # (N,)
|
||
imag = np.imag(data[0]) # (N,)
|
||
stacked = np.stack([real, imag], axis=0) # shape (2, N)
|
||
return stacked.astype(np.float32)
|
||
|
||
|
||
def generate_datasets(cfg: DataSetConfig) -> tuple:
|
||
"""
|
||
Generates a dataset from a folder of .npy files and saves it to an HDF5 file
|
||
|
||
Parameters:
|
||
cfg (DataSetConfig): Dataset configuration loaded from app.yaml
|
||
|
||
Returns:
|
||
dset (h5py.Dataset): The created dataset object
|
||
"""
|
||
|
||
parent = os.path.dirname("data/dataset")
|
||
if not parent:
|
||
os.makedirs("data/dataset", exist_ok=True)
|
||
|
||
# we assume the recordings are in .npy format
|
||
files = os.listdir("data/recordings")
|
||
if not files:
|
||
raise ValueError("No files found in the specified directory.")
|
||
|
||
records = []
|
||
for fname in files:
|
||
rec = from_npy(os.path.join("data/recordings", fname))
|
||
|
||
data = rec.data # here data is a numpy array with the shape (1, N)
|
||
|
||
data = complex_to_channel(data) # convert to 2-channel real array
|
||
|
||
md = rec.metadata # pull metadata from the recording
|
||
md.setdefault("recid", len(records))
|
||
records.append((data, md))
|
||
|
||
# split each recording into <num_slices> snippets each
|
||
|
||
records = split_recording(records, cfg.num_slices)
|
||
|
||
train_records, val_records = split(records, cfg.train_split, cfg.seed)
|
||
|
||
train_path = os.path.join("data/dataset", "train.h5")
|
||
val_path = os.path.join("data/dataset", "val.h5")
|
||
|
||
write_hdf5_file(train_records, train_path, "training_data")
|
||
write_hdf5_file(val_records, val_path, "validation_data")
|
||
|
||
return train_path, val_path
|
||
|
||
|
||
def main():
|
||
settings = get_app_settings()
|
||
dataset_cfg = settings.dataset
|
||
|
||
print("📦 Generating training and validation datasets...")
|
||
print(f" ➤ Slicing each recording into {dataset_cfg.num_slices} snippets")
|
||
print(
|
||
f" ➤ Train/Val split: {int(dataset_cfg.train_split * 100)}% / {int((1 - dataset_cfg.train_split) * 100)}%"
|
||
)
|
||
print(f" ➤ Output directory: data/dataset\n")
|
||
|
||
train_path, val_path = generate_datasets(dataset_cfg)
|
||
|
||
# Count number of samples in each file
|
||
with h5py.File(train_path, "r") as f:
|
||
num_train = f["training_data"].shape[0]
|
||
with h5py.File(val_path, "r") as f:
|
||
num_val = f["validation_data"].shape[0]
|
||
|
||
print("✅ Dataset generation complete!")
|
||
print(f" 🔹 Training samples saved to: {train_path} ({num_train} samples)")
|
||
print(f" 🔸 Validation samples saved to: {val_path} ({num_val} samples)")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|