modrec-workflow/scripts/dataset_building/split_dataset.py
Liyu Xiao b14cc2cce5
Some checks failed
RIA Hub Workflow Demo / ria-demo (push) Failing after 32s
deletdd files, updated workflow
2025-06-13 13:58:35 -04:00

78 lines
2.3 KiB
Python

import random
from collections import defaultdict
def split(dataset, train_frac=0.8, seed=42, label_key="modulation"):
"""
Splits a dataset into smaller datasets based on the specified lengths.
Parameters:
dataset (list): The dataset to be split.
lengths (list): A list of lengths for each split.
Returns:
list: A list of split datasets.
"""
rec_buckets = defaultdict(list)
for data, md in dataset:
rec_buckets[md["recid"]].append((data, md))
rec_labels = {} # store labels for each recording
for rec_id, group in rec_buckets.items():
label = group[0][1][label_key]
if isinstance(label, bytes): # if the label is a byte string
label = label.decode("utf-8")
rec_labels[rec_id] = label
label_rec_ids = defaultdict(list) # group rec_ids by label
for rec_id, label in rec_labels.items():
label_rec_ids[label].append(rec_id)
random.seed(seed)
train_recs, val_recs = set(), set()
for label, rec_ids in label_rec_ids.items():
random.shuffle(rec_ids)
split_idx = int(len(rec_ids) * train_frac)
train_recs.update(
rec_ids[:split_idx]
) # pulls train_frac or rec_ids per label, guarantees all modulations are represented
val_recs.update(rec_ids[split_idx:])
# add the assigned recordings to the train and val datasets
train_dataset, val_dataset = [], []
for rec_id, group in rec_buckets.items():
if rec_id in train_recs:
train_dataset.extend(group)
elif rec_id in val_recs:
val_dataset.extend(group)
return train_dataset, val_dataset
def split_recording(recording_list, num_snippets):
"""
Splits a list of recordings into smaller chunks.
Parameters:
recording_list (list): List of recordings to be split
Returns: yeah yeah
list: List of split recordings
"""
snippet_list = []
for data, md in recording_list:
C, N = data.shape
L = N // num_snippets
for i in range(num_snippets):
start = i * L
end = (i + 1) * L
snippet = data[:, start:end]
# copy the metadata, adding a snippet index
snippet_md = md.copy()
snippet_md["snippet_idx"] = i
snippet_list.append((snippet, snippet_md))
return snippet_list