liyu-dev #3
|
@ -13,128 +13,114 @@ from helpers.app_settings import get_app_settings
|
|||
|
||||
|
||||
def load_validation_data():
|
||||
val_dataset = ModulationH5Dataset(
|
||||
"data/dataset/val.h5", label_name="modulation", data_key="validation_data"
|
||||
)
|
||||
val_dataset = ModulationH5Dataset(
|
||||
"data/dataset/val.h5", label_name="modulation", data_key="validation_data"
|
||||
)
|
||||
|
||||
x = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
|
||||
y = np.array([y.item() for _, y in val_dataset]) # shape: (N,)
|
||||
class_names = list(val_dataset.label_encoder.classes_)
|
||||
|
||||
x = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
|
||||
y = np.array([y.item() for _, y in val_dataset]) # shape: (N,)
|
||||
class_names = list(val_dataset.label_encoder.classes_)
|
||||
|
||||
|
||||
return x, y, class_names
|
||||
return x, y, class_names
|
||||
|
||||
|
||||
def build_model_from_ckpt(
|
||||
ckpt_path: str, in_channels: int, num_classes: int
|
||||
ckpt_path: str, in_channels: int, num_classes: int
|
||||
) -> torch.nn.Module:
|
||||
"""
|
||||
Build and return a PyTorch model loaded from a checkpoint.
|
||||
"""
|
||||
model = RFClassifier(
|
||||
model=mobilenetv3(
|
||||
model_size="mobilenetv3_small_050",
|
||||
num_classes=num_classes,
|
||||
in_chans=in_channels,
|
||||
)
|
||||
)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
"""
|
||||
Build and return a PyTorch model loaded from a checkpoint.
|
||||
"""
|
||||
model = RFClassifier(
|
||||
model=mobilenetv3(
|
||||
model_size="mobilenetv3_small_050",
|
||||
num_classes=num_classes,
|
||||
in_chans=in_channels,
|
||||
)
|
||||
)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def evaluate_checkpoint(ckpt_path: str):
|
||||
"""
|
||||
Loads the model from checkpoint and evaluates it on a validation set.
|
||||
Prints classification metrics and plots a confusion matrix.
|
||||
"""
|
||||
"""
|
||||
Loads the model from checkpoint and evaluates it on a validation set.
|
||||
Prints classification metrics and plots a confusion matrix.
|
||||
"""
|
||||
|
||||
# Load validation data
|
||||
X_val, y_true, class_names = load_validation_data()
|
||||
num_classes = len(class_names)
|
||||
in_channels = X_val.shape[1]
|
||||
|
||||
# Load validation data
|
||||
X_val, y_true, class_names = load_validation_data()
|
||||
num_classes = len(class_names)
|
||||
in_channels = X_val.shape[1]
|
||||
# Load model
|
||||
model = build_model_from_ckpt(
|
||||
ckpt_path, in_channels=in_channels, num_classes=num_classes
|
||||
)
|
||||
|
||||
# Inference
|
||||
y_pred = []
|
||||
with torch.no_grad():
|
||||
for x in X_val:
|
||||
x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32)
|
||||
logits = model(x_tensor)
|
||||
pred = torch.argmax(logits, dim=1).item()
|
||||
y_pred.append(pred)
|
||||
|
||||
# Load model
|
||||
model = build_model_from_ckpt(
|
||||
ckpt_path, in_channels=in_channels, num_classes=num_classes
|
||||
)
|
||||
|
||||
|
||||
# Inference
|
||||
y_pred = []
|
||||
with torch.no_grad():
|
||||
for x in X_val:
|
||||
x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32)
|
||||
logits = model(x_tensor)
|
||||
pred = torch.argmax(logits, dim=1).item()
|
||||
y_pred.append(pred)
|
||||
|
||||
|
||||
# Print classification report
|
||||
print("\nClassification Report:")
|
||||
print(
|
||||
classification_report(y_true, y_pred, target_names=class_names, zero_division=0)
|
||||
)
|
||||
|
||||
|
||||
|
||||
print_confusion_matrix(
|
||||
y_true=np.array(y_true),
|
||||
y_pred=np.array(y_pred),
|
||||
classes=class_names,
|
||||
normalize=True,
|
||||
title="Normalized Confusion Matrix",
|
||||
)
|
||||
|
||||
# Print classification report
|
||||
print("\nClassification Report:")
|
||||
print(
|
||||
classification_report(y_true, y_pred, target_names=class_names, zero_division=0)
|
||||
)
|
||||
|
||||
print_confusion_matrix(
|
||||
y_true=np.array(y_true),
|
||||
y_pred=np.array(y_pred),
|
||||
classes=class_names,
|
||||
normalize=True,
|
||||
title="Normalized Confusion Matrix",
|
||||
)
|
||||
|
||||
|
||||
def print_confusion_matrix(
|
||||
y_true: np.ndarray,
|
||||
y_pred: np.ndarray,
|
||||
classes: list[str],
|
||||
normalize: bool = True,
|
||||
title: str = "Confusion Matrix (counts and normalized)",
|
||||
y_true: np.ndarray,
|
||||
y_pred: np.ndarray,
|
||||
classes: list[str],
|
||||
normalize: bool = True,
|
||||
title: str = "Confusion Matrix (counts and normalized)",
|
||||
) -> None:
|
||||
"""
|
||||
Plot a confusion matrix showing both raw counts and (optionally) normalized values.
|
||||
"""
|
||||
Plot a confusion matrix showing both raw counts and (optionally) normalized values.
|
||||
|
||||
|
||||
Args:
|
||||
y_true: true labels (integers 0..C-1)
|
||||
y_pred: predicted labels (same shape as y_true)
|
||||
classes: list of class‐name strings in index order
|
||||
normalize: if True, each row is normalized to sum=1
|
||||
title: title for the plot
|
||||
"""
|
||||
# 1) build raw CM
|
||||
c = len(classes)
|
||||
cm = np.zeros((c, c), dtype=int)
|
||||
for t, p in zip(y_true, y_pred):
|
||||
cm[t, p] += 1
|
||||
|
||||
|
||||
# 2) normalize if requested
|
||||
if normalize:
|
||||
with np.errstate(divide="ignore", invalid="ignore"):
|
||||
cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None]
|
||||
cm_norm = np.nan_to_num(cm_norm)
|
||||
print_confusion_matrix_helper(cm_norm, classes)
|
||||
else:
|
||||
print_confusion_matrix_helper(cm, classes)
|
||||
|
||||
Args:
|
||||
y_true: true labels (integers 0..C-1)
|
||||
y_pred: predicted labels (same shape as y_true)
|
||||
classes: list of class‐name strings in index order
|
||||
normalize: if True, each row is normalized to sum=1
|
||||
title: title for the plot
|
||||
"""
|
||||
# 1) build raw CM
|
||||
c = len(classes)
|
||||
cm = np.zeros((c, c), dtype=int)
|
||||
for t, p in zip(y_true, y_pred):
|
||||
cm[t, p] += 1
|
||||
|
||||
# 2) normalize if requested
|
||||
if normalize:
|
||||
with np.errstate(divide="ignore", invalid="ignore"):
|
||||
cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None]
|
||||
cm_norm = np.nan_to_num(cm_norm)
|
||||
print_confusion_matrix_helper(cm_norm, classes)
|
||||
else:
|
||||
print_confusion_matrix_helper(cm, classes)
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=2):
|
||||
"""
|
||||
Pretty prints a confusion matrix with x/y labels.
|
||||
|
@ -168,7 +154,7 @@ def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
settings = get_app_settings()
|
||||
evaluate_checkpoint(os.path.join("checkpoint_files", "inference_recognition_model.ckpt"))
|
||||
|
||||
|
||||
settings = get_app_settings()
|
||||
evaluate_checkpoint(
|
||||
os.path.join("checkpoint_files", "inference_recognition_model.ckpt")
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue
Block a user