liyu-dev #3
|
@ -13,128 +13,114 @@ from helpers.app_settings import get_app_settings
|
||||||
|
|
||||||
|
|
||||||
def load_validation_data():
|
def load_validation_data():
|
||||||
val_dataset = ModulationH5Dataset(
|
val_dataset = ModulationH5Dataset(
|
||||||
"data/dataset/val.h5", label_name="modulation", data_key="validation_data"
|
"data/dataset/val.h5", label_name="modulation", data_key="validation_data"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
x = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
|
||||||
|
y = np.array([y.item() for _, y in val_dataset]) # shape: (N,)
|
||||||
|
class_names = list(val_dataset.label_encoder.classes_)
|
||||||
|
|
||||||
x = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
|
return x, y, class_names
|
||||||
y = np.array([y.item() for _, y in val_dataset]) # shape: (N,)
|
|
||||||
class_names = list(val_dataset.label_encoder.classes_)
|
|
||||||
|
|
||||||
|
|
||||||
return x, y, class_names
|
|
||||||
|
|
||||||
|
|
||||||
def build_model_from_ckpt(
|
def build_model_from_ckpt(
|
||||||
ckpt_path: str, in_channels: int, num_classes: int
|
ckpt_path: str, in_channels: int, num_classes: int
|
||||||
) -> torch.nn.Module:
|
) -> torch.nn.Module:
|
||||||
"""
|
"""
|
||||||
Build and return a PyTorch model loaded from a checkpoint.
|
Build and return a PyTorch model loaded from a checkpoint.
|
||||||
"""
|
"""
|
||||||
model = RFClassifier(
|
model = RFClassifier(
|
||||||
model=mobilenetv3(
|
model=mobilenetv3(
|
||||||
model_size="mobilenetv3_small_050",
|
model_size="mobilenetv3_small_050",
|
||||||
num_classes=num_classes,
|
num_classes=num_classes,
|
||||||
in_chans=in_channels,
|
in_chans=in_channels,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device)
|
checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device)
|
||||||
model.load_state_dict(checkpoint["state_dict"])
|
model.load_state_dict(checkpoint["state_dict"])
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate_checkpoint(ckpt_path: str):
|
def evaluate_checkpoint(ckpt_path: str):
|
||||||
"""
|
"""
|
||||||
Loads the model from checkpoint and evaluates it on a validation set.
|
Loads the model from checkpoint and evaluates it on a validation set.
|
||||||
Prints classification metrics and plots a confusion matrix.
|
Prints classification metrics and plots a confusion matrix.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Load validation data
|
||||||
|
X_val, y_true, class_names = load_validation_data()
|
||||||
|
num_classes = len(class_names)
|
||||||
|
in_channels = X_val.shape[1]
|
||||||
|
|
||||||
# Load validation data
|
# Load model
|
||||||
X_val, y_true, class_names = load_validation_data()
|
model = build_model_from_ckpt(
|
||||||
num_classes = len(class_names)
|
ckpt_path, in_channels=in_channels, num_classes=num_classes
|
||||||
in_channels = X_val.shape[1]
|
)
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
y_pred = []
|
||||||
|
with torch.no_grad():
|
||||||
|
for x in X_val:
|
||||||
|
x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32)
|
||||||
|
logits = model(x_tensor)
|
||||||
|
pred = torch.argmax(logits, dim=1).item()
|
||||||
|
y_pred.append(pred)
|
||||||
|
|
||||||
# Load model
|
# Print classification report
|
||||||
model = build_model_from_ckpt(
|
print("\nClassification Report:")
|
||||||
ckpt_path, in_channels=in_channels, num_classes=num_classes
|
print(
|
||||||
)
|
classification_report(y_true, y_pred, target_names=class_names, zero_division=0)
|
||||||
|
)
|
||||||
|
|
||||||
# Inference
|
|
||||||
y_pred = []
|
|
||||||
with torch.no_grad():
|
|
||||||
for x in X_val:
|
|
||||||
x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32)
|
|
||||||
logits = model(x_tensor)
|
|
||||||
pred = torch.argmax(logits, dim=1).item()
|
|
||||||
y_pred.append(pred)
|
|
||||||
|
|
||||||
|
|
||||||
# Print classification report
|
|
||||||
print("\nClassification Report:")
|
|
||||||
print(
|
|
||||||
classification_report(y_true, y_pred, target_names=class_names, zero_division=0)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
print_confusion_matrix(
|
|
||||||
y_true=np.array(y_true),
|
|
||||||
y_pred=np.array(y_pred),
|
|
||||||
classes=class_names,
|
|
||||||
normalize=True,
|
|
||||||
title="Normalized Confusion Matrix",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
print_confusion_matrix(
|
||||||
|
y_true=np.array(y_true),
|
||||||
|
y_pred=np.array(y_pred),
|
||||||
|
classes=class_names,
|
||||||
|
normalize=True,
|
||||||
|
title="Normalized Confusion Matrix",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def print_confusion_matrix(
|
def print_confusion_matrix(
|
||||||
y_true: np.ndarray,
|
y_true: np.ndarray,
|
||||||
y_pred: np.ndarray,
|
y_pred: np.ndarray,
|
||||||
classes: list[str],
|
classes: list[str],
|
||||||
normalize: bool = True,
|
normalize: bool = True,
|
||||||
title: str = "Confusion Matrix (counts and normalized)",
|
title: str = "Confusion Matrix (counts and normalized)",
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Plot a confusion matrix showing both raw counts and (optionally) normalized values.
|
Plot a confusion matrix showing both raw counts and (optionally) normalized values.
|
||||||
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
y_true: true labels (integers 0..C-1)
|
y_true: true labels (integers 0..C-1)
|
||||||
y_pred: predicted labels (same shape as y_true)
|
y_pred: predicted labels (same shape as y_true)
|
||||||
classes: list of class‐name strings in index order
|
classes: list of class‐name strings in index order
|
||||||
normalize: if True, each row is normalized to sum=1
|
normalize: if True, each row is normalized to sum=1
|
||||||
title: title for the plot
|
title: title for the plot
|
||||||
"""
|
"""
|
||||||
# 1) build raw CM
|
# 1) build raw CM
|
||||||
c = len(classes)
|
c = len(classes)
|
||||||
cm = np.zeros((c, c), dtype=int)
|
cm = np.zeros((c, c), dtype=int)
|
||||||
for t, p in zip(y_true, y_pred):
|
for t, p in zip(y_true, y_pred):
|
||||||
cm[t, p] += 1
|
cm[t, p] += 1
|
||||||
|
|
||||||
|
|
||||||
# 2) normalize if requested
|
|
||||||
if normalize:
|
|
||||||
with np.errstate(divide="ignore", invalid="ignore"):
|
|
||||||
cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None]
|
|
||||||
cm_norm = np.nan_to_num(cm_norm)
|
|
||||||
print_confusion_matrix_helper(cm_norm, classes)
|
|
||||||
else:
|
|
||||||
print_confusion_matrix_helper(cm, classes)
|
|
||||||
|
|
||||||
|
|
||||||
|
# 2) normalize if requested
|
||||||
|
if normalize:
|
||||||
|
with np.errstate(divide="ignore", invalid="ignore"):
|
||||||
|
cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None]
|
||||||
|
cm_norm = np.nan_to_num(cm_norm)
|
||||||
|
print_confusion_matrix_helper(cm_norm, classes)
|
||||||
|
else:
|
||||||
|
print_confusion_matrix_helper(cm, classes)
|
||||||
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=2):
|
def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=2):
|
||||||
"""
|
"""
|
||||||
Pretty prints a confusion matrix with x/y labels.
|
Pretty prints a confusion matrix with x/y labels.
|
||||||
|
@ -148,13 +134,13 @@ def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=
|
||||||
matrix = np.array(matrix)
|
matrix = np.array(matrix)
|
||||||
num_classes = matrix.shape[0]
|
num_classes = matrix.shape[0]
|
||||||
labels = classes or list(range(num_classes))
|
labels = classes or list(range(num_classes))
|
||||||
|
|
||||||
# Header
|
# Header
|
||||||
print(" " * 9 + "Ground Truth →")
|
print(" " * 9 + "Ground Truth →")
|
||||||
header = "Pred ↓ | " + " ".join([f"{str(label):>6}" for label in labels])
|
header = "Pred ↓ | " + " ".join([f"{str(label):>6}" for label in labels])
|
||||||
print(header)
|
print(header)
|
||||||
print("-" * len(header))
|
print("-" * len(header))
|
||||||
|
|
||||||
# Rows
|
# Rows
|
||||||
for i in range(num_classes):
|
for i in range(num_classes):
|
||||||
row_vals = matrix[i]
|
row_vals = matrix[i]
|
||||||
|
@ -166,9 +152,9 @@ def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=
|
||||||
row_str = " ".join([f"{int(val):>6}" for val in row_vals])
|
row_str = " ".join([f"{int(val):>6}" for val in row_vals])
|
||||||
print(f"{str(labels[i]):>7} | {row_str}")
|
print(f"{str(labels[i]):>7} | {row_str}")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
settings = get_app_settings()
|
settings = get_app_settings()
|
||||||
evaluate_checkpoint(os.path.join("checkpoint_files", "inference_recognition_model.ckpt"))
|
evaluate_checkpoint(
|
||||||
|
os.path.join("checkpoint_files", "inference_recognition_model.ckpt")
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user