added in confusion matrix for the output
All checks were successful
Modulation Recognition Demo / ria-demo (push) Successful in 2m46s

This commit is contained in:
Liyu Xiao 2025-07-09 15:39:20 -04:00
parent 9979d84e29
commit 6d531ae5f3

View File

@ -17,11 +17,13 @@ def load_validation_data():
"data/dataset/val.h5", label_name="modulation", data_key="validation_data" "data/dataset/val.h5", label_name="modulation", data_key="validation_data"
) )
X = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
x = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L)
y = np.array([y.item() for _, y in val_dataset]) # shape: (N,) y = np.array([y.item() for _, y in val_dataset]) # shape: (N,)
class_names = list(val_dataset.label_encoder.classes_) class_names = list(val_dataset.label_encoder.classes_)
return X, y, class_names
return x, y, class_names
def build_model_from_ckpt( def build_model_from_ckpt(
@ -44,22 +46,27 @@ def build_model_from_ckpt(
return model return model
def evaluate_checkpoint(ckpt_path: str): def evaluate_checkpoint(ckpt_path: str):
""" """
Loads the model from checkpoint and evaluates it on a validation set. Loads the model from checkpoint and evaluates it on a validation set.
Prints classification metrics and plots a confusion matrix. Prints classification metrics and plots a confusion matrix.
""" """
# Load validation data # Load validation data
X_val, y_true, class_names = load_validation_data() X_val, y_true, class_names = load_validation_data()
num_classes = len(class_names) num_classes = len(class_names)
in_channels = X_val.shape[1] in_channels = X_val.shape[1]
# Load model # Load model
model = build_model_from_ckpt( model = build_model_from_ckpt(
ckpt_path, in_channels=in_channels, num_classes=num_classes ckpt_path, in_channels=in_channels, num_classes=num_classes
) )
# Inference # Inference
y_pred = [] y_pred = []
with torch.no_grad(): with torch.no_grad():
@ -69,13 +76,16 @@ def evaluate_checkpoint(ckpt_path: str):
pred = torch.argmax(logits, dim=1).item() pred = torch.argmax(logits, dim=1).item()
y_pred.append(pred) y_pred.append(pred)
# Print classification report # Print classification report
print("\nClassification Report:") print("\nClassification Report:")
print( print(
classification_report(y_true, y_pred, target_names=class_names, zero_division=0) classification_report(y_true, y_pred, target_names=class_names, zero_division=0)
) )
plot_confusion_matrix_with_counts(
print_confusion_matrix(
y_true=np.array(y_true), y_true=np.array(y_true),
y_pred=np.array(y_pred), y_pred=np.array(y_pred),
classes=class_names, classes=class_names,
@ -84,7 +94,9 @@ def evaluate_checkpoint(ckpt_path: str):
) )
def plot_confusion_matrix_with_counts(
def print_confusion_matrix(
y_true: np.ndarray, y_true: np.ndarray,
y_pred: np.ndarray, y_pred: np.ndarray,
classes: list[str], classes: list[str],
@ -94,6 +106,7 @@ def plot_confusion_matrix_with_counts(
""" """
Plot a confusion matrix showing both raw counts and (optionally) normalized values. Plot a confusion matrix showing both raw counts and (optionally) normalized values.
Args: Args:
y_true: true labels (integers 0..C-1) y_true: true labels (integers 0..C-1)
y_pred: predicted labels (same shape as y_true) y_pred: predicted labels (same shape as y_true)
@ -102,43 +115,60 @@ def plot_confusion_matrix_with_counts(
title: title for the plot title: title for the plot
""" """
# 1) build raw CM # 1) build raw CM
C = len(classes) c = len(classes)
cm = np.zeros((C, C), dtype=int) cm = np.zeros((c, c), dtype=int)
for t, p in zip(y_true, y_pred): for t, p in zip(y_true, y_pred):
cm[t, p] += 1 cm[t, p] += 1
# 2) normalize if requested # 2) normalize if requested
if normalize: if normalize:
with np.errstate(divide="ignore", invalid="ignore"): with np.errstate(divide="ignore", invalid="ignore"):
cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None] cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None]
cm_norm = np.nan_to_num(cm_norm) cm_norm = np.nan_to_num(cm_norm)
print_confusion_matrix_helper(cm_norm, classes)
else: else:
cm_norm = cm print_confusion_matrix_helper(cm, classes)
# 3) plot
fig, ax = plt.subplots(figsize=(8, 8))
im = ax.imshow(cm_norm, interpolation="nearest")
ax.set_title(title)
ax.set_xlabel("Predicted label")
ax.set_ylabel("True label")
ax.set_xticks(np.arange(C))
ax.set_yticks(np.arange(C))
ax.set_xticklabels(classes, rotation=45, ha="right")
ax.set_yticklabels(classes)
# 4) annotate
for i in range(C):
for j in range(C):
count = cm[i, j]
val = cm_norm[i, j]
txt = f"{count}\n{val:.2f}"
ax.text(j, i, txt, ha="center", va="center")
fig.colorbar(im, ax=ax, label="Normalized value" if normalize else "Count")
plt.tight_layout() import numpy as np
plt.show()
def print_confusion_matrix_helper(matrix, classes=None, normalize=False, digits=2):
"""
Pretty prints a confusion matrix with x/y labels.
Parameters:
- matrix: square 2D numpy array
- labels: list of class labels (default: range(num_classes))
- normalize: whether to normalize rows to sum to 1
- digits: number of decimal places to show for normalized values
"""
matrix = np.array(matrix)
num_classes = matrix.shape[0]
labels = classes or list(range(num_classes))
# Header
print(" " * 9 + "Ground Truth →")
header = "Pred ↓ | " + " ".join([f"{str(label):>6}" for label in labels])
print(header)
print("-" * len(header))
# Rows
for i in range(num_classes):
row_vals = matrix[i]
if normalize:
row_sum = row_vals.sum()
row_vals = row_vals / row_sum if row_sum != 0 else row_vals
row_str = " ".join([f"{val:>6.{digits}f}" for val in row_vals])
else:
row_str = " ".join([f"{int(val):>6}" for val in row_vals])
print(f"{str(labels[i]):>7} | {row_str}")
if __name__ == "__main__": if __name__ == "__main__":
settings = get_app_settings() settings = get_app_settings()
evaluate_checkpoint(os.path.join("checkpoint_files", "inference_recognition_model.ckpt")) evaluate_checkpoint(os.path.join("checkpoint_files", "inference_recognition_model.ckpt"))