modrec-workflow/scripts/training/plot_data.py

93 lines
2.8 KiB
Python
Raw Normal View History

import os
import torch
import numpy as np
import h5py
from sklearn.metrics import classification_report
from matplotlib import pyplot as plt
from scripts.training.mobilenetv3 import mobilenetv3, RFClassifier
from helpers.app_settings import get_app_settings
from cm_plotter import plot_confusion_matrix
2025-06-18 10:23:11 -04:00
def load_validation_data(h5_path:str ="data/datasets/val.h5"):
"""
Loads validation data from an HDF5 file.
Returns:
X_val: np.ndarray of shape (N, C, L)
y_val: np.ndarray of shape (N,)
class_names: list of class names
"""
with h5py.File(h5_path, "r") as f:
X = f["X"][:] # shape: (N, C, L)
y = f["y"][:] # shape: (N,)
if "class_names" in f:
class_names = [s.decode("utf-8") for s in f["class_names"][:]]
else:
class_names = [str(i) for i in np.unique(y)]
return X, y, class_names
def build_model_from_ckpt(ckpt_path: str, in_channels: int, num_classes: int) -> torch.nn.Module:
"""
Build and return a PyTorch model loaded from a checkpoint.
"""
model = RFClassifier(
model=mobilenetv3(
model_size="mobilenetv3_small_050",
num_classes=num_classes,
in_chans=in_channels
)
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(
ckpt_path, weights_only=True, map_location=device
)
model.load_state_dict(checkpoint["state_dict"])
model.eval()
return model
def evaluate_checkpoint(ckpt_path: str):
"""
Loads the model from checkpoint and evaluates it on a validation set.
Prints classification metrics and plots a confusion matrix.
"""
# Load validation data
X_val, y_true, class_names = load_validation_data()
num_classes = len(class_names)
in_channels = X_val.shape[1]
# Load model
model = build_model_from_ckpt(ckpt_path, in_channels=in_channels, num_classes=num_classes)
# Inference
y_pred = []
with torch.no_grad():
for x in X_val:
x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32)
logits = model(x_tensor)
pred = torch.argmax(logits, dim=1).item()
y_pred.append(pred)
# Print classification report
print("\nClassification Report:")
print(classification_report(y_true, y_pred, target_names=class_names))
# Plot confusion matrix
plot_confusion_matrix(
y_true=np.array(y_true),
y_pred=np.array(y_pred),
classes=class_names,
normalize=True,
title="Normalized Confusion Matrix"
)
plt.show()
if __name__ == "__main__":
settings = get_app_settings()
ckpt_path = os.path.join("checkpoint_files", "inference_recognition_model.ckpt")
evaluate_checkpoint(ckpt_path)