import os import torch import numpy as np from sklearn.metrics import classification_report os.environ["NNPACK"] = "0" from matplotlib import pyplot as plt from scripts.training.mobilenetv3 import mobilenetv3, RFClassifier from helpers.app_settings import get_app_settings from cm_plotter import plot_confusion_matrix from scripts.training.modulation_dataset import ModulationH5Dataset def load_validation_data(): val_dataset = ModulationH5Dataset( "data/dataset/val.h5", label_name="modulation", data_key="validation_data" ) X = np.stack([x.numpy() for x, _ in val_dataset]) # shape: (N, C, L) y = np.array([y.item() for _, y in val_dataset]) # shape: (N,) class_names = list(val_dataset.label_encoder.classes_) return X, y, class_names def build_model_from_ckpt( ckpt_path: str, in_channels: int, num_classes: int ) -> torch.nn.Module: """ Build and return a PyTorch model loaded from a checkpoint. """ model = RFClassifier( model=mobilenetv3( model_size="mobilenetv3_small_050", num_classes=num_classes, in_chans=in_channels, ) ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") checkpoint = torch.load(ckpt_path, weights_only=True, map_location=device) model.load_state_dict(checkpoint["state_dict"]) model.eval() return model def evaluate_checkpoint(ckpt_path: str): """ Loads the model from checkpoint and evaluates it on a validation set. Prints classification metrics and plots a confusion matrix. """ # Load validation data X_val, y_true, class_names = load_validation_data() num_classes = len(class_names) in_channels = X_val.shape[1] # Load model model = build_model_from_ckpt( ckpt_path, in_channels=in_channels, num_classes=num_classes ) # Inference y_pred = [] with torch.no_grad(): for x in X_val: x_tensor = torch.tensor(x[np.newaxis, ...], dtype=torch.float32) logits = model(x_tensor) pred = torch.argmax(logits, dim=1).item() y_pred.append(pred) # Print classification report print("\nClassification Report:") print( classification_report(y_true, y_pred, target_names=class_names, zero_division=0) ) plot_confusion_matrix_with_counts( y_true=np.array(y_true), y_pred=np.array(y_pred), classes=class_names, normalize=True, title="Normalized Confusion Matrix", ) def plot_confusion_matrix_with_counts( y_true: np.ndarray, y_pred: np.ndarray, classes: list[str], normalize: bool = True, title: str = "Confusion Matrix (counts and normalized)", ) -> None: """ Plot a confusion matrix showing both raw counts and (optionally) normalized values. Args: y_true: true labels (integers 0..C-1) y_pred: predicted labels (same shape as y_true) classes: list of class‐name strings in index order normalize: if True, each row is normalized to sum=1 title: title for the plot """ # 1) build raw CM C = len(classes) cm = np.zeros((C, C), dtype=int) for t, p in zip(y_true, y_pred): cm[t, p] += 1 # 2) normalize if requested if normalize: with np.errstate(divide="ignore", invalid="ignore"): cm_norm = cm.astype(float) / cm.sum(axis=1)[:, None] cm_norm = np.nan_to_num(cm_norm) else: cm_norm = cm # 3) plot fig, ax = plt.subplots(figsize=(8, 8)) im = ax.imshow(cm_norm, interpolation="nearest") ax.set_title(title) ax.set_xlabel("Predicted label") ax.set_ylabel("True label") ax.set_xticks(np.arange(C)) ax.set_yticks(np.arange(C)) ax.set_xticklabels(classes, rotation=45, ha="right") ax.set_yticklabels(classes) # 4) annotate for i in range(C): for j in range(C): count = cm[i, j] val = cm_norm[i, j] txt = f"{count}\n{val:.2f}" ax.text(j, i, txt, ha="center", va="center") fig.colorbar(im, ax=ax, label="Normalized value" if normalize else "Count") plt.tight_layout() plt.show() if __name__ == "__main__": settings = get_app_settings() ckpt_path = os.path.join("checkpoint_files", "inference_recognition_model.ckpt") evaluate_checkpoint(ckpt_path)