diff --git a/scripts/application_packager/convert_to_onnx.py b/scripts/application_packager/convert_to_onnx.py index a2401b7..dd050c4 100644 --- a/scripts/application_packager/convert_to_onnx.py +++ b/scripts/application_packager/convert_to_onnx.py @@ -21,7 +21,7 @@ def convert_to_onnx(ckpt_path: str, fp16: bool = False) -> None: in_channels = 2 batch_size = 1 - slice_length = int(1024 / dataset_cfg.num_slices) + slice_length = int(dataset_cfg.recording_length / dataset_cfg.num_slices) num_classes = len(dataset_cfg.modulation_types) model = RFClassifier( @@ -42,7 +42,7 @@ def convert_to_onnx(ckpt_path: str, fp16: bool = False) -> None: model.eval() # Generate random sample data - base, ext = os.path.splitext(os.path.basename(ckpt_path)) + base, _ = os.path.splitext(os.path.basename(ckpt_path)) if fp16: output_path = os.path.join("onnx_files", f"{base}.onnx") sample_input = torch.from_numpy( diff --git a/scripts/dataset_manager/split_dataset.py b/scripts/dataset_manager/split_dataset.py index 0f820b1..f2f26f2 100644 --- a/scripts/dataset_manager/split_dataset.py +++ b/scripts/dataset_manager/split_dataset.py @@ -90,7 +90,7 @@ def split_recording( snippet_list = [] for data, md in recording_list: - C, N = data.shape + _, N = data.shape L = N // num_snippets for i in range(num_snippets): start = i * L